Gainesville State College

Fourteenth Annual Mathematics Tournament

April 12, 2008

Solutions for the Afternoon Team Competition

Round 1

Let x be the number of rabbits, y be the number of kittens, and z the number of chickens. We have

- (1) x + y + z = 100
- (2) 2x + y + 0.1z = 100

The third condition gives us $z = \frac{2}{3}(x+y)$ or 3z = 2x + 2y.

Multiply equation (1) by 2 to obtain $2x + 2y + 2z = 200 \Rightarrow 3z + 2z = 200 \Rightarrow z = 40$. Substituting back and reducing, we have

x y 60

Round 3

To get a zero at the end of a number, you need to multiply a 2 and a 5 together. There are fewer factors of 5 in numbers between 1 and 100 than there are factors of 2. So the number of factors of 5 contained in 100! determines the number of zeros at the end.

100! = (the other integers without factors of 5) (100.95.90....5).

The tables show all the integers with factors of 5 that are in 100!

Round 4

$$\angle A + \angle 1 + \angle D = 180^{\circ}$$

$$\angle B + \angle 2 + \angle E = 180^{\circ}$$

$$\angle C + \angle 3 + \angle A = 180^{\circ}$$

$$\angle D + \angle 4 + \angle B = 180^{\circ}$$

$$\angle E + \angle 5 + \angle C = 180^{\circ}$$
2(

Round 5

The discriminant is b^2-4c . If $b^2-4c<0$, then $b^2<4c$ and the quadratic equation has no real solutions. Consider the following:

- 1. When b=1, $b^2=1 \Rightarrow 1 < 4c \Rightarrow c > \frac{1}{4}$. So c=1,2,3,4,5,6,7,8,9,10. Thus, 10 such equations.
- 2. When b = 2, $b^2 = 4 \Rightarrow 4 < 4c \Rightarrow c > 1$. So c = 2,3,4,5,6,7,8,9,10. Thus, 9 such equations.
- 3. When b = 3, $b^2 = 9 \Rightarrow 9 < 4c \Rightarrow c > \frac{9}{4}$. So c = 3, 4, 5, 6, 7, 8, 9, 10. Thus, 8 such equations.
- 4. When b = 4, $b^2 = 16 \Rightarrow 16 < 4c \Rightarrow c > 4$. So c = 5, 6, 7, 8, 9, 10. Thus, 6 such equations.
- 5. When b=5, $b^2=25 \Rightarrow 25 < 4c \Rightarrow c > \frac{25}{4}$. So c=7,8,9,10. Thus, 4 such equations.
- 6. When b = 6, $b^2 = 36 \Rightarrow 36 < 4c \Rightarrow c > 9$. So c = 10. Thus, 1 such equation.
- 7. When b = 7, $b^2 = 49 \Rightarrow 49 < 4c \Rightarrow c > \frac{49}{4} > 10$. So there are no more considerations.

Hence, there are a total of 10+9+8+6+4+1=38 such equations.

				i					
					 :				
1		•			•				
1									1
				i			i		
F					 				
		! :							
1					1				1
h									
ł l									
	_								
h)) ·	
ł l	_						i .	•	
)	 				
1									
-			:						
1									
F) – – –) ·	
	_	į.		j					
-) ·	
				i i			ji.		
1									
\vdash						-		-	-
1							i I		
[,			,	-	

Round 7

$$\frac{1 \cdot 2 \cdot 4 + 2 \cdot 4 \cdot 8 + 3 \cdot 6 \cdot 12 +}{1 \ 3 \ 9 \ 2 \ 6 \ 18 \ 3 \ 9 \ 27} \quad \frac{\frac{1}{3}}{1 \ 3 \ 9 \left(1^{3} \ 2^{3} \ 3^{3} \ \right)} = \frac{1 \cdot 2 \cdot 4 \left(1^{3} + 2^{3} + 3^{3} + \ \right)}{1 \ 3 \ 9 \left(1^{3} \ 2^{3} \ 3^{3} \ \right)} = \frac{8}{27} \quad \frac{1}{3} = \frac{2}{3}$$